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Abstract
The estimation of the density matrix of a k-level quantum system is studied
when the parametrization is given by the real and imaginary part of the entries,
and they are estimated by independent measurements. It is established that the
properties of the estimation procedure depend very much on the invertibility
of the true state. In particular, in the case of a pure state, the estimation
should be constrained to ensure the positive definiteness of the estimate. An
efficient constraining algorithm is proposed and it yields an asymptotically
unbiased estimate. Moreover, several estimation schemes are compared for the
unknown state of a qubit when one copy is measured at a time. It is shown
that the average mean quadratic error matrix is the smallest if the applied
observables are complementary. All the results are illustrated by computer
simulations.

PACS numbers: 03.67.−a, 03.65.Wj, 03.65.Fd

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The problem of inferring the state of a quantum system from measurement data is fundamental.
Although this problem may be traced back to the seventies [7] the interest in such questions
has been renewed in the field of quantum information theory. One side of this problem is the
adequate experimental techniques, and the other side is the theory based on the adaptation
of statistics to the quantum-mechanical formalism. A quantum state estimation strategy
includes the selection of suitable observables, a parametrization of the state, an estimation
procedure and a distance between the true and estimated density matrices. Most of the
papers use maximum-likelihood (ML) or Bayesian estimation procedures with compatible
parametrization and distance [4].

Most of the work in state estimation has focused on states of a qubit, pure states [6], or
mixed states [1, 9, 13]. An adaptive observable selection strategy based on a Bloch vector
parametrization in spherical coordinates and on a Bayesian estimation method of qubits in
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mixed states is reported in [2]. The estimation procedure for pure states is simpler, partially
due to the smaller number of parameters, but the procedures designed for the case of mixed
state encounter difficulties if applied for a pure or nearly pure unknown state. This is partially
caused by the limited amount and accuracy of measured data implying that the positivity
of the reconstructed density matrix may not be ensured. In order to solve this problem,
a normalization procedure for incompatible operators is proposed in [8] for using a ML
approach and relative entropy as a distance.

The subject of the present paper is state estimation for a k-level quantum system. In this
case the boundary of the state space is not the set of pure states but the non-invertible density
matrices. The entries of the density matrix provide a natural parametrization of the state space.
Based on this parametrization, the aim of this paper is to develop efficient strategies for point
estimation that can handle the positivity constraint on the state estimate.

The accuracy of the estimation can be quantified by the fidelity or by the Hilbert–Schmidt
distance. For larger matrices the latter seems to be easier to handle. In order to be consistent
with the proposed point estimation strategy, the mean quadratic error matrix is used when
different estimation schemes are compared.

2. The estimation scheme

The goal of state estimation is to determine the density operator ρ of a quantum system by
measurements on n copies of the quantum system which are all prepared according to ρ

[3, 4, 9]. The number n corresponds to the sample size in classical mathematical statistics.
An estimation scheme means a collection of measurements and an estimate for every n. The
estimate is a mapping defined on the measurement data and its values are density operators.
For a reasonable scheme, we expect the estimation error to tend to 0 when n tends to infinity
(i.e. we expect to have an asymptotically unbiased estimate) as a consequence of the law of
large numbers.

Assume that ρ is the density matrix of our system described on the Hilbert space H. Then
the n identical copies are described by the n-fold tensor product Hn := Hn⊗ and the state is
ρn := ρn⊗. When dimH = k, we can identify the operators of Hn with matrices of kn × kn.
In this paper we study measurement schemes given by self-adjoint matrices

A(n) = (A(n)ij )
k
i,j=1, (1)

where A(n)ij ∈ B(Hn). Note that A(n) is determined by k2 self-adjoint operators acting on
Hn. They are the diagonal entries Z(n)ii ≡ A(n)ii of A(n), moreover the off-diagonal entries
are written as

A(n)ij = X(n)ij + iY (n)ij (i < j)

by means of self-adjoint X(n)ij and Y (n)ij . The measurement scheme A(n) means that the
observables Z(n)ii , X(n)ij and Y (n)ij are measured on the r copies of the original system.
Since the sum of the diagonal entries of a density matrix is 1, it is enough to measure k − 1
diagonal entries; for example, Z(n)kk can be removed from the set of observables to be
measured and k2 − 1 observables remain. Hence n = r(k2 − 1).

The above construction is in an analogy to the classical estimation setting in mathematical
statistics if the observables are regarded as matrix-valued random variables that carry
information about the unknown parameters of the density matrix ρ through the measured
values obtained by measuring the observables on the system. Because of their properties,
density matrices of a k-level system can be described by k2 − 1 parameters, thus one needs at
least k2 − 1 observables to estimate their parameters. The measurement of each observable is
repeated r times, therefore one needs n = r(k2 − 1) measurements for the estimation.
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Example 1. Let k = 2 and let us construct the observables in such a way that they act on the
n identical copies

Sn(σi) = 1

n
(σi ⊗ I2 ⊗ · · · ⊗ I2 + I2 ⊗ σi ⊗ I2 ⊗ · · · ⊗ I2 + · · · + I2 ⊗ I2 ⊗ · · · ⊗ σi)

Sn(σi) ∈ B(Hn),

where 1 � i � 3, σi are the Pauli matrices and I2 is the identity matrix, all of them are 2 × 2
complex matrices. One term in the bracket corresponds to a measurement when one applies
the observable σi to a particular instance from the set of n identical copies and leaves the rest
unchanged. Set

A(n) = 1

2

[
In + Sn(σ3) Sn(σ1) − iSn(σ2)

Sn(σ1) + iSn(σ2) In − Sn(σ3)

]
, (2)

where In denotes the identity on Hn.
We may have a better understanding of this estimation scheme if the n-fold product is

considered to be embedded into the infinite product. This means that the unit matrices In are
identified, and we write simply I. Then elements of A(n) are in one huge algebra and the limit
n → ∞ is more visible. If

ρ =
[
ρ11 ρ12

ρ21 ρ22

]
,

then the law of large numbers guarantees that

A(n)ij → ρij I.

Therefore, the error is going to 0 when n goes to ∞ for any reasonable definition of the error.
The entries of the matrix (2) do not commute, therefore there is no joint Kolmogorovian

model for them and the observables cannot be measured simultaneously. We modify this
matrix, in order to use standard probabilistic tools.

On the infinite tensor product Mk ⊗ Mk ⊗ · · · we introduce the right shift γ :

γ (H1 ⊗ H2 ⊗ · · ·Hn ⊗ Ik ⊗ Ik · · ·) = Ik ⊗ H1 ⊗ H2 ⊗ · · · Hn ⊗ Ik ⊗ Ik · · · .
Now we set

Â(n) = 1

2

[
I + Sr(σ3) γ r(Sr(σ1)) − iγ 2r (Sr(σ2))

γ r(Sr(σ1)) + iγ 2r (Sr(σ2)) I − Sr(σ3)

]
. (3)

The operators Sr(σ3), γ
r(Sr(σ1)) and γ 2r (Sr(σ2)) commute. They may be regarded as classical

random variables, one can speak about their joint distribution, variance etc.
The simplest case is when r = 1, i.e. one measurement of each k2 − 1 = 3 observables

is performed. This way the total number of measurements is 3, and Â(3) turns to be

Â(3) = 1

2

[
I3 + σ3 ⊗ I ⊗ I I ⊗ σ1 ⊗ I − i(I ⊗ I ⊗ σ2)

I ⊗ σ1 ⊗ I + i(I ⊗ I ⊗ σ2) I3 − σ3 ⊗ I ⊗ I

]
.

Practically, it means that the measurement of σ3 is performed first, then comes observable σ1

and finally σ2.

The very concrete estimation scheme we use will be the natural extension of example 1.
Denote by Eij the k × k matrix units and set

Zii := γ τ(i,i)(Eii) (1 � i < k),

Xij := γ τ(i,j)(Eij + Eji) (i < j),

Yij := γ τ(j,i)(−iEij + iEji) (i < j),
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where τ : {(i, j) : 1 � i, j � k, (i, j) �= (k, k)} → {1, 2, . . . , k2 −1} is an arbitrary bijection.
These self-adjoint operators commute and behave as independent random variables. The
spectrum of Zii is {0, 1} and the spectrum of Xij and Yij is {−1, 0, 1}. The matrix A(k2 − 1)

is determined by these operator entries.
Finally, the estimation scheme A(r(k2 − 1)) is defined by the formulae

Z(r(k2 − 1))ii := 1

r

r−1∑
m=0

γ m(k2−1)(Zii) (1 � i < k),

X(r(k2 − 1))ij := 1

r

r−1∑
m=0

γ m(k2−1)(Xij ) (i < j),

Y (r(k2 − 1))ij := 1

r

r−1∑
m=0

γ m(k2−1)(Yij ) (i < j).

Note that to carry on the measurement of all these observables, r(k2 −1) copies of the original
quantum system are needed. The entries of A(n) are commuting observables, therefore
there is a basis in Hn such that all of them are diagonal in this basis. Consequently, a
single measurement can be performed theoretically instead of the measurements of the k2 − 1
observables (n = r(k2 − 1)).

The estimation procedure. Our aim is to estimate the k × k density matrix ρ of a quantum
system. The parametrization is naturally given by the entries of the matrix. In what follows,
we are given several copies of a k-level quantum system in the same state. We perform
measurements on the systems one after another, that is, a system is measured only once, the
next measurement is performed on the next copy of the system, so the states of the systems
after the measurement are irrelevant from our viewpoint.

If we want to estimate the real part of the ij th entry of the density matrix ρ, then we
measure the observable Eij + Eji . Its spectral decomposition is

1 · 1

2
(Eii + Eij + Eji + Ejj ) + 0 ·

∑
i �=m�=j

Emm − 1 · 1

2
(Eii − Eij − Eji + Ejj ),

and its measurement has three different outcomes: ±1 and 0. The probabilities of the outcomes
±1 are

Prob(Xij = ±1) = 1
2 (ρii ± ρij ± ρji + ρjj ) = 1

2 (ρii + ρjj ) ± Re ρij . (4)

To estimate the imaginary part, we measure iEij − iEji with spectral decomposition

1 · 1

2
(Eii + iEij − iEji + Ejj ) + 0 ·

∑
i �=m�=j

Emm − 1 · 1

2
(Eii − iEij + iEji + Ejj ).

The probabilities are

Prob(Yij = ±1) = 1
2 (ρii ± iρij ∓ iρji + ρjj ) = 1

2 (ρii + ρjj ) ± Im ρij . (5)

Finally, for the diagonal ii entry we have

Prob(Zii = +1) = ρii . (6)

Altogether we have k2 − 1 different measurements and each of them is repeated r times.
The measurement outcomes form a set Xn and this is the domain of the matrix-valued estimate.
To determine the estimate we need only the relative frequencies of the outcomes of the
k2 − 1 different measurements, all of them are performed r times. If M is one of the
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measurements which has an outcome t, then we denote by ν(r,M, t) the relative frequency
of t when the measurement is performed r times. According to the law of large numbers,
ν(r,M, t) → Prob(M = t) as r → ∞. (Of course, Prob(M = t) depends on the true state of
our system.)

The following estimate is natural:

(i) �un
n ii

= ν(r, Zii, +1) for (1 � i < k) and

�un
n kk

= 1 −
k−1∑
i=1

ν(r, Zii, +1),

(ii) Re �un
n ij

= 1
2 (ν(r,Xij , +1) − ν(r,Xij ,−1)) for i < j .

(iii) Im �un
n ij

= 1
2 (ν(r, Yij , +1) − ν(r, Yij ,−1)) for i < j .

In our notation, ‘un’ is an abbreviation of the word unconstrained. It may happen that �un
n

is not a positive semidefinite matrix; hence, it is not an estimate in the really strict sense. Let
Mk denote the set of all self-adjoint k × k matrices of trace 1. It follows from the definition
of the estimate that �un

n takes its values in Mk . Note that the set of invertible density matrices
form an open subset of Mk .

Properties of the estimate. Because of construction, the above unconstrained estimate is
unbiased. That follows from the fact that the expectation value of the relative frequencies
involved is the probabilities. For example, the expectation value of the diagonal elements of
the estimator can be computed as

E�un
n ii

= Eν(r, Zii, +1) = Prob(Zii = +1) = ρii .

The expectation value for the real and imaginary part of the off-diagonal elements can be
computed similarly.

Given a true state ρ,�un
n is a matrix-(or vector-)valued random variable which is the mean

of r-independent copies of �un
m ,m = k2 − 1. Let G ⊂ Mk be an open set such that ρ ∈ G.

According to the law of large numbers,

Prob
(
�un

n /∈ G
) → 0,

however, according to the large deviation theorem the convergence is exponentially fast:

Prob
(
�un

n /∈ G
)

� C exp(−nEG),

where EG > 0 is the infimum of the so-called rate function; see [5].

Theorem 1. Assume that ρ is an invertible density matrix. The probability of that �un
n is not

a density matrix converges exponentially to 0 as n → ∞.

Proof. The expectation value of �un
m is ρ ∈ Mk . Cramér’s theorem tells us that there is a

function I : Mk → R
+ ∪ {+∞} such that for any open set containing ρ

lim sup
n→∞

1

n
log Prob

(
�un

n /∈ G
)

� − inf{I (D) : D ∈ Mk\G}.
The RHS is strictly negative and if ρ is invertible, then we can choose G such that it consists
of density matrices (that is, its elements are positive definite). This gives the proof.

The computation of the rate function I is theoretically possible, but we do not need its
concrete form. �

Although the expectation value of the unconstrained estimate �un
n is the true state, this

does not mean that �un
n is a good estimate. It may happen that the value of �un

n is outside the
state space with some probability.
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Example 2. Consider the pure state

ρ = 1

2

[
2 0
0 0

]
= 1

2
(σ0 + σ3). (7)

The following observables are measured:

Z11 =
[

1 0
0 0

]
, X12 =

[
0 1
1 0

]
, Y12 =

[
0 −i
i 0

]
.

The measurement of Z11 gives 1 (with probability 1). For the others we have

Prob(X12 = ±1) = Prob(Y12 = ±1) = 1
2 .

Let us introduce the binary valued random variable γ with

γ :=
{

1 with probability 1/2,

−1 with probability 1/2.
(8)

Then evidently γ 2 = 1 with probability 1.
The estimator can be regarded as a matrix-valued random variable in the form

�un
3r =

[
1 ((β1 + · · · + βr) − i(γ1 + · · · + γr))/2r

((β1 + · · · + βr) + i(γ1 + · · · + γr))/2r 0

]
,

where γi and βj are identically distributed independent random variables with the same
distribution as γ (8).

It is easy to see that the expectation value of the determinant of �un
3r is −1/2r . This shows

that although the expectation value of the determinant is zero in the limit (as a consequence of
unbiasedness of the estimate), but the estimate has always a negative eigenvalue with positive
probability. Therefore, in this example �un

3r is a rather bad estimate.
Figure 1 shows a simulation with another pure state (σ0 + σ1)/2. The Hilbert–Smith

distance of the estimator �un
3r and the true density matrix has been computed as a function of

n where each point has been generated using a new set of n = 3r qubits. It is seen that the
convergence is indeed very slow, not of an exponential type.

The properties of the unconstrained estimate �un
n depend very much on the true state. If

the eigenvalues of the true state are strictly positive (and not very small), then the estimate
is rather good and the convergence is visible from the simulations; see figures 2 and 3. The
simulations are essentially simpler in the 2 × 2 case, when the boundary of the state space
consists of pure states and the positivity of the estimate can be seen from the length of the Bloch
vector. In the 3 × 3 case the boundary is more complicated, it consists of the non-invertible
densities.

3. Constrained estimate

There are cases when �un
n is not a positive semidefinite matrix, sometimes we call �un

n

unconstrained estimate. The expectation value of �un
n is the true state of the system, so it is

an unbiased estimate.
We can use the method of least squares to get a density matrix:

�n := argminωTr
(
�un

n − ω
)2 = argminω

∑
i,j

(
�un

n

)
ij

− ωij

)2
, (9)

where ω runs over the density matrices. The density matrices form a closed convex set Dk ,
therefore the minimizer is unique. Note that for a qubit the closest positive semidefinite matrix
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Figure 1. The Hilbert–Schmidt distance between the true pure state (σ0 +σ1)/2 and �un
n converges

very slowly to 0 as n → ∞.

is easy to find. When the values of the estimate are 2 × 2 matrices, they can be identified by
vectors in R

3. When the estimate is unconstrained, it my happen that the values can go out of
the Bloch ball (see figure 4 for an example).

If the values of the estimates are simply the Bloch vectors, then

�n =
{

�un
n if

∥∥�un
n

∥∥ � 1,

�un
n‖�un
n ‖ otherwise.

(10)

Theorem 2. The constrained estimate �n is asymptotically unbiased.

Proof. We can use the fact that �un
n is unbiased and to show that �n is an asymptotically

unbiased estimate we study their difference. Let p(x) be the probability of the measurement
result x ∈ Xn. Denote by X the set of outcomes such that �un

n (x) �= �n(x). Then evidently∑
x

�un
n (x)p(x) −

∑
x

�n(x)p(x) =
∑
x∈X

(
�un

n (x) − �n(x)
)
p(x). (11)

IfDk ⊂ Mk is the set of density matrices, then X is the set of outcomes x such that �un
n (x) /∈ Dk .

Let us fix a norm on the space Mk . (Note that all norms are equivalent.)
Let ε > 0 be arbitrary. We split X into two subsets:

X1 = {
x ∈ X : distance

(
�un

n (x),Dk

)
� ε

}
and X2 = X\X1.

Note that distance
(
�un

n (x),Dk

) = ∥∥�un
n (x) − �n(x)

∥∥. Then∑
x∈X

∥∥�un
n (x) − �n(x)

∥∥p(x) �
∑
x∈X1

∥∥�un
n (x) − �n(x)

∥∥p(x) +
∑
x∈X2

∥∥�un
n (x) − �n(x)

∥∥p(x).
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Figure 2. The Hilbert–Schmidt distance between the true 3 × 3 state with eigenvalues
0.1186, 0.2871, 0.5943 and the estimate. When the number of the measurement is more than
200, the unconstrained estimate gives really a positive semidefinite matrix.

The first term is majorized by ε and the second one by C Prob(X1). Since the first is arbitrary
small and the latter goes to 0, we can conclude that (11) goes to 0. �

Computing the constrained estimate. The computation of the minimizer of (9) is easier
if �un

n is diagonal. Since �un
n is self-adjoint, changing the basis we may assume that

�un
n = Diag(x1, x2, . . . , xn) and x1, x2, . . . , xk < 0 and xk+1, xk+2, . . . , xn � 0. The

minimizer is obviously diagonal, hence we need to solve

argminyi

∑
i

(xi − yi)
2

under the constraint yi � 0 and
∑

i yi = 1. According to the inequality between the quadratic
and arithmetic means, we have

n∑
i=1

(xi − yi)
2 �

k∑
i=1

x2
i +

n∑
i=k+1

(xi − yi)
2 �

k∑
i=1

x2
i +

1

n − k

(
n∑

i=k+1

(xi − yi)

)2

=
k∑

i=1

x2
i +

1

n − k

(
k∑

i=1

yi − xi

)2

.

If

yi = xi + c

(
i = k + 1, k + 2, . . . , n, c = 1

n − k

k∑
i=1

xi, c < 0

)
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Figure 3. The fidelity between the true 2 × 2 mixed state with eigenvalues 0.1235, 0.8765 and
the estimate. When the number of the measurement is more than 10, the unconstrained and the
constrained estimates are the same.

are positive, then the minimizer is (y1, y2, . . . , yn), where y1 = y2 = · · · = yk = 0 and the
other yi’s are defined above. If the n-tuple (y1, y2, . . . , yn) contains negative entries, then we
repeat the procedure, the negative entries are replaced with 0 and the actual value of c is added
to the other entries. After finitely many steps we arrive at the minimizer. Figure 5 shows the
details for n = 3.

In the general case, we can change the basis such that �un
n becomes diagonal, since

the Hilbert–Schmidt distance is invariant under this transformation. So let U�un
n U ∗ =

Diag(x1, x2, . . . , xn) for a unitary U. Then we compute the minimizer Diag(y1, y2, . . . , yn)

using the above procedure and

�n = U ∗Diag(y1, y2, . . . , yn)U.

Note that there are other computationally feasible methods for computing the constrained
estimate, the details and simulation results can be found in [10].

4. Estimations for a qubit

The mean quadratic error matrix may be used to measure the efficiency of an estimate. If the
unknown state is parametrized by (θ1, θ2, . . . , θm), then the mean quadratic error is an m×m

matrix defined as

Vn(θ)i,j :=
∑
x∈Xn

(�n(x)i − θi)(�n(x)j − θj )p(x) (1 � i, j � m),

where Xn is the set of measurement outcomes.
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Figure 4. The fidelity between the true 2 × 2 pure state and the estimates. The unconstrained
estimate is often outside of the Bloch ball and in this case the (real part of the complex) fidelity
can be greater than 1. The constrained estimate converges to the true state.

(0,0,1)

(0,1,0)

x=0

(1,0,0)

y=0

z=0

(1/2, -1/2, 1) 

(1/6, -1/2, 8/6) 

( -1/12, 0,  13/12) 

(1/4, 0, 3/4) 

Figure 5. The constrained estimate for 3 × 3 matrices. The plain x + y + z = 1 of R
3 is shown.

The triangle {(x, y, z) : x, y, z � 0} corresponds to the diagonal density matrices. Starting from
the unconstrained estimate Diag(1/2, −1/2, 1), the constrained Diag(1/4, 0, 3/4) is reached in
one step. Starting from Diag(1/6, −1/2, 8/6), two steps are needed.
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In the case of a qubit with m = k2 − 1 = 3, the Bloch parametrization can be used:

ρ = 1

2

[
1 + θ3 θ1 − iθ2

θ1 + iθ2 1 + θ3

]
.

Then θ = (θ1, θ2, θ3)
t belongs to the unit ball of R

3. ((θ1, θ2, θ3)
t means a column vector,

so t may be regarded as the transpose.)

The estimation scheme. Throughout this section the 2-level case (k = 2) is considered, and
the observables are derived from the ‘standard’ ones being the Pauli matrices:

σ1 =
[

0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
All of them has the spectrum {+1,−1}, that is, the possible outcomes of their measurement
are ±1. All three observables have the spectral decomposition

σi = (+1)Ei,+ + (−1)Ei,−, (i = 1, 2, 3),

where Ei,± are eigenprojections.
The probability of having outcome ±1 for σi is

Tr ρEi,+ = 1
2 (1 ± θi), (i = 1, 2, 3).

Applying a slightly different version of the estimator introduced in section 2, it has the form

�un
3r =




2ν(r, σ1, +1) − 1

2ν(r, σ2, +1) − 1

2ν(r, σ3, +1) − 1


 .

Note that the above estimator maps the set of measurement outcomes to the set of Bloch vectors
while that presented in section 2 maps onto the set of density matrices. The observables are
also not the same for the two estimators: the above one uses the Pauli matrix σ3 instead of Zii .

Example 3. Assume that the observables

A(i) = u(i) · σ (1 � i � 3), σ = (σ1, σ2, σ3)

are measured in the true state

ρθ = 1

2
(I + θ · σ) = 1

2

[
1 + θ3 θ1 − iθ2

θ1 + iθ2 1 − θ3

]
, (12)

where u(1), u(2) and u(3) are unit vectors in R
3. The spectral decomposition of A(i) is

1 · 1
2 (I + u(i) · σ) + (−1) · 1

2 (I − u(i) · σ)

and

pi := Prob(A(i) = 1) = 1 + u(i) · θ

2
.

If the measurements are performed r times, then Prob(A(i) = +1) is estimated by the relative
frequency ν(r, A(i), +1) of the outcome +1. The equations

ν(r, A(i), +1) = 1 + u(i) · θ̂
2

(1 � i � 3)

should be solved to find an estimate. The solution is

θ̂ = 2T −1(ν(r, A(1), +1), ν(r, A(2), +1), ν(r, A(3), +1))t − T −11 (13)
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where t denotes the transpose (of a row vector), 1 = (1, 1, 1)t and the matrix T is

T =

u(1)1 u(1)2 u(1)3

u(2)1 u(2)2 u(2)3

u(3)1 u(3)2 u(3)3


 .

In particular, if each of the three measurements is performed once and the result is
ε = (ε1, ε2, ε3)

t , then the unconstrained estimate (in Bloch vector form) is

�un
3 (ε) = 2T −1ε − T −11.

Similarly to (13), we have

θ = 2T −1p − T −11. (14)

The mean quadratic error matrix is the expectation of((
�un

3 (ε) − θ
)(

�un
3 (ε) − θ

)t) = 4(T −1ε − T −1p)(T −1ε − T −1p)t

= 4T −1((ε − p)(ε − p)t )(T −1)∗

and the computation yields

V
gen

3 (θ) = 4T −1


1 − (u(1) · θ)2 0 0

0 1 − (u(2) · θ)2 0
0 0 1 − (u(3) · θ)2


 (T −1)∗. (15)

When each measurement is performed r times, then

V gen
n (θ) = 3

n
V

gen
3 (θ),

where n = 3r . If the observables σ1, σ2 and σ3 are measured, then

V comp
n (θ) = 3

n


1 − θ2

1 0 0
0 1 − θ2

2 0
0 0 1 − θ2

3


 . (16)

Theorem 3. In the context of the previous example, the determinant of the average mean
quadratic error matrix is the smallest, if the vectors u(1), u(2) and u(3) are orthogonal, that
is, the observables A(1), A(2) and A(3) are complementary.

Proof. On the parameter space, the Bloch ball, we consider the normalized Lebesgue measure.
(Any rotationally invariant measure may be considered and gives similar result.) Since∫

V gen
n (θ) dθ = T −1

(
I −

∫
Diag((u(1) · θ)2, (u(2) · θ)2, (u(2) · θ)2) dθ

)
(T −1)∗

= C(T ∗T )−1

with some positive constant C, the determinant is minimal if Det(T ∗T ) = (Det T )2 is maximal.
Det T is the volume of the parallelepipedone determined by the three vectors u(1), u(2) and
u(3), and it is maximal when they are orthogonal. �

The content of the theorem is similar to the result of [14]; however, in the approach of
Wootters and Fields the mean quadratic error was not minimized but the information gain
was maximized. The complementary (or unbiased) measurements are optimal from both
viewpoints. The optimality of the complementarity has been the motivation to study this
concept and to extend it to subsystems [11, 12].
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Example 4. Let σi = Pi − Qi be the spectral decomposition and let

Fi = Pi

3
and Fi+3 = Qi

3
(1 � i � 3)

be a POVM, denoted by Astand. The corresponding measurement is sometimes called standard
qubit tomography [13] and it has six outcomes with probabilities

pi = 1 + θi

6
, pi+3 = 1 − θi

6
(1 � i � 3).

It is important to note that (opposed to the previous example) there is only one kind of
measurement in this case, i.e. n = r .

The appropriate unconstrained and density matrix valued state estimate

�stand
1 (i) = 1

2 (I + 3σi) = −I + 3Pi, �stand
1 (i + 3) = 1

2 (I − 3σi) = −I + 3Qi

is unbiased. The symbols i stands for the different outcomes of the measurement corresponding
to Fi and Fi+3 (1 � i � 3).

The estimator can also be given in Bloch vector form for n measurements as

�stand
n = 3

6∑
j=1

ν(n,Astand, j)ej ,

where

e1 = (1, 0, 0)t ,

e2 = (0, 1, 0)t ,

e3 = (0, 0, 1)t ,

e4 = −e1,

e5 = −e2,

e6 = −e3

and ν(n,Astand, j) denotes the relative frequency of the j th outcome of the POVM Astand.
The quadratic error matrix for n-independent measurements is

V stand
n (θ) = 1

n




3 − θ2
1 −θ1θ2 −θ1θ3

−θ1θ2 3 − θ2
2 −θ2θ3

−θ1θ3 −θ2θ3 3 − θ2
3


 . (17)

Proposition 1. In the context of the previous example, the complementary measurement is
more efficient than the standard one, i.e. its mean quadratic error matrix is smaller.

Proof. To compare the efficiency of the standard measurement and the complementary
measurement, we study the mean quadratic error matrices (16) and (17). The difference
V stand

n (θ) − V
comp
n (θ) has the form

1

n




3 − θ2
1 −θ1θ2 −θ1θ3

−θ1θ2 3 − θ2
2 −θ2θ3

−θ1θ3 −θ2θ3 3 − θ2
3


 − 3

n




1 − θ2
1 0 0

0 1 − θ2
2 0

0 0 1 − θ2
3




= 1

n




2θ2
1 −θ1θ2 −θ1θ3

−θ1θ2 2θ2
2 −θ2θ3

−θ1θ3 −θ2θ3 2θ2
3


 = 1

n




2 −1 −1

−1 2 −1

−1 −1 2


 ◦







θ1

θ2

θ3


 · [θ1θ2θ3]


 ,

where ◦ stands for the Hadamard (or Schur) product. Since the Hadamard product of two
positive semidefinite matrices is positive semidefinite, we have V stand

n (θ) � V
comp
n (θ). The

complementary measurement is more effective, than the standard one. �
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Example 5. Consider the following Bloch vectors

a1 = 1√
3
(1, 1, 1), a2 = 1√

3
(1,−1,−1),

a3 = 1√
3
(−1, 1,−1), a4 = 1√

3
(−1,−1, 1),

and form the positive operators

Fi = 1
4 (σ0 + ai · σ) (1 � i � 4). (18)

They determine a measurement,
∑4

i=1 Fi = I . The probability of the outcome i is

pi = Tr Fiρθ = 1
4 (1 + ai · θ).

The above POVM is called minimal qubit tomography by Rehácek, Englert and Kaszlikowski
[13] and in the following it is denoted by Amin. In this case n = r , again.

The matrix-valued estimator

�min
1 (i) = −σ0 + 6Fi (1 � i � 4).

is unbiased. If the measurement is performed n times, then the average (written in Bloch
vector-valued form) is

�min
n = 3

4∑
i=1

ν(n,Amin, i)ai (19)

where ν(n,Amin, i) is the relative frequency of the ith outcome from the n measurements of
Amin. The mean quadratic error matrix is

V min
n (θ) = 1

n


 3 − θ2

1

√
3θ3 − θ1θ2

√
3θ2 − θ1θ3√

3θ3 − θ1θ2 3 − θ2
2

√
3θ1 − θ2θ3√

3θ2 − θ1θ3

√
3θ1 − θ2θ3 3 − θ2

3


 . (20)

Unfortunately, the above matrix is not comparable with the mean quadratic error matrix (16),
i.e. their difference is indefinite. However, Tr V

comp
n � Tr V min

n .

5. Conclusion

The estimation of the density matrix of a k-level quantum system is studied in this paper. The
essential ingredients of an estimation scheme are identified. Those are the parametrization
of the density operator ρ, the observables to be measured, and the estimator mapping the
measured values to an estimate of the density operator. The considered parametrization is
given by the real and imaginary part of the entries, and they are estimated by independent
measurements. A special set of commuting observables is defined in order to obtain measured
values that are classical random variables.

The unconstrained estimate gives a matrix which may not be positive definite and the
constrained estimate is the closest density matrix with respect to the Hilbert–Schmidt distance.
The constrained estimate is given by a simple procedure starting with the diagonalization of
the unconstrained one.

It is established that the properties of the estimation procedure depend very much on the
invertibility of the true state. In case of an invertible true state, the unconstrained estimate
becomes proper relatively fast. It has been found that for pure states the unconstrained
estimates, that are self-adjoint by construction, may not be positive semidefinite and this
requires to apply a regularization called constrained estimation procedure.
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The estimation procedures carried out by different estimators are compared on the basis of
the biasedness of the estimates and their mean quadratic error matrices. In particular, several
estimation schemes are compared for the unknown state of a qubit when a single qubit is
measured at a time, and its density matrix is parametrized using the Bloch vector. It is shown
that the average mean quadratic error matrix is the smallest if the applied observables are
complementary. The results are illustrated by computer simulations.
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